
THESIS

ISOMORPHISMS IN CO-TT GRAPHS

Submitted by

David K. Besen

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2019

Master’s Committee:

Advisor: Ross McConnell

Wim Bohm
Chris Peterson

Copyright by David K. Besen 2019

All Rights Reserved

ABSTRACT

ISOMORPHISMS IN CO-TT GRAPHS

A threshold tolerance graph is a graph where each vertex v is assigned a weight wv and

a tolerance tv, and there is an edge between two vertices vx and vy if and only if wx + wy ≥

min(tx, ty). A co-TT graph is the complement of a threshold tolerance graph. Recognition of

these graphs can be done in O(n2) time; however, no polynomial-time algorithm to identify

isomorphisms between pairs of TT or co-TT graphs was previously known. We give an

algorithm to identify these isomorphisms, which takes O(n2) time.

ii

ACKNOWLEDGEMENTS

I would like to thank the following people, without whom I would never have succeeded:

Steven Colby, for reminding me that it’s possible to find a calling;

Ross McConnell, for trusting that I would find something that genuinely interests me;

Cole Frederick, for his interest and encouragement;

My parents Robert and Linda, for their love and support;

Sanjay Rajopadhye, for unknowingly keeping me on track.

iii

DEDICATION

This work is dedicated to Janusz Okolowicz, the most inspiring middle school math teacher

a young nerd could ever wish for.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

CHAPTER 1 Background . 1

1.1 General graph isomorphism . 1

1.2 Relevant graph classes, concepts, and definitions 2

1.2.1 Interval graphs . 2

1.2.2 Asteroidal triples . 3

1.2.3 The consecutive ones property . 5

1.2.4 Threshold graphs . 7

1.2.5 Threshold tolerance and co-TT graphs 9

1.2.6 PQ trees . 10

1.2.7 Modular decomposition . 13

1.2.8 ∆ trees . 17

1.2.9 The tree isomorphism algorithm 20

CHAPTER 2 Unknown isomorphisms . 21

2.1 Performing a blue-red division . 21

2.2 Reducing the co-TT graph . 22

2.3 Finding the blue-only interval model 24

2.4 Creating the red extension of the blue model 24

2.5 Creating the intersection type matrices 24

2.6 Isomorphisms between ∆ trees . 27

2.7 Obtaining πH,H′ . 29

2.8 Obtaining πG,G′ . 29

v

2.9 Algorithm . 29

BIBLIOGRAPHY . 32

vi

CHAPTER 1

BACKGROUND

1.1 General graph isomorphism

A graph is a set of vertices V and a set of edges E such that each edge is associated with

exactly two ordered vertices. All graphs are directed, and an undirected graph is a graph

where the edge set is symmetric; that is, if there is an edge from vertex u to vertex v, then

there is also an edge from v to u.

If two graphs G and G′ have vertex sets V and V ′, an isomorphism is a bijection function

f : V → V ′ such that (f(u), f(v)) is an edge of G′ if and only if (u, v) is an edge of G for

all u, v ∈ V . Two graphs that share at least one isomorphism are said to be isomorphic. A

nontrivial isomorphism from a graph G to itself is called an automorphism, and if an auto-

morphism for G exists, G is automorphic. Intuitively, isomorphism represents the concept

of "sameness" between graphs.

The problem of deciding whether two general graphs are isomorphic is not easy. No

polynomial time solution is known, and no proof has been given that it is NP complete. As

of this writing, a quasipolynomial time algorithm capable of finding isomorphisms between

general graphs has been offered and refined by Babai [2, 3], but has not yet been fully peer

reviewed. (Quasipolynomial time means the algorithm runs in between polynomial time and

exponential time; the worst case runtime of a quasipolynomial algorithm is O(2(log n)c) where

the constant c > 1.)

In practice, whether or not two finite graphs are isomorphic is often easily solved. For

example, if two graphs have a different number of vertices of some degree, they are clearly

not isomorphic. Isomorphisms can be detected in polynomial time between graphs in many

common graph classes, such as trees [1] and interval graphs [11] (graphs that can be rep-

resented by intervals on a line; see Section 1.2.1.). The well-known programs nauty and

1

Figure 1.1: Two drawings of the Petersen graph

Traces implement heuristics that often work well in practice to provide isomorphisms for

many common graphs [14].

For some graphs, the problem becomes more difficult. The Petersen graph in Figure 1.1

illustrates an example of a problem that can arise. In this graph, all vertices have exactly

three neighbors, and yet a random vertex mapping between two Petersen graphs will be

unlikely to produce an isomorphism.

1.2 Relevant graph classes, concepts, and definitions

We shall now give some related definitions and descriptions for some related graph classes

and ideas.

A clique, synonymous with a complete graph or subgraph, is a set of vertices such that

every pair of vertices in the set are adjacent. A maximal clique is a clique that is not a subset

of any other clique. A maximum clique in G is a clique such that no other clique in G has

more vertices.

Let N(v) represent the neighbors of vertex v excluding v itself (the "open neighborhood"),

and let N [v] = N(v)∪ {v} (the "closed neighborhood"). A simplicial vertex is a vertex such

that N [v] induces a clique.

1.2.1 Interval graphs

An interval model is a set of closed intervals on a line. Each interval represents one vertex

of a graph. Two vertices are adjacent if and only if their intervals intersect. An interval graph

2

is a graph that can be represented by an interval model. An interval may be represented by

two numbers [a, b], where a is the interval’s start point and b is the interval’s end point.

If G consists of vertices V and edges E, and V ′ ⊆ V , then G[V ′], the subgraph of G

induced by V ′, is vertices V ′ with edges E ∩ (V ′×V ′). A property of a graph G is hereditary

if any induced subgraph of G also has that property. For example, any induced subgraph of

an interval graph is also an interval graph, since intervals may be removed from the interval

model to obtain an interval model of the induced subgraph.

A chordal graph is a graph that has no chordless cycle of length 4 or greater.

Theorem 1. [7] Every interval graph is chordal.

Proof. Suppose an interval graph G has interval model IG and has a chordless cycle C =

v1, v2, ..., vk, v1 for k ≥ 4. One interval [a, b] in IG must end first; without loss of generality,

let this interval be v1. Likewise, one interval [a′, b′] begins latest; let this interval be vb. Note

b 6= 2 and b 6= k, and v1 does not intersect vb. Then, since C is a cycle, there are two paths

between v1 and vb; one path P1 = v1, v2, ..., vb and the other path P2 = v1, vk, vk−1, ..., vb.

Both P1 and P2 must cross the range (b, a′). Let c be a point in this range. At least one

vertex u 6= v1, vb in P1 must intersect c, since P1 crosses the entire range. Likewise, at least

one vertex w 6= v1, vb in P2 must intersect c. Therefore, since they both contain the point c,

u and w intersect, contradicting that C is chordless.

1.2.2 Asteroidal triples

An asteroidal triple is a set of three vertices such that there is a path between any two

vertices that does not pass through the neighborhood of the third. The vertices a, b, and c

comprise such a triple in Figure 1.2, and this figure is proof that not every chordal graph

is an interval graph. In the interval model for this figure, e and f must lie between b and

c. Also, d must lie between e and f since it intersects e and f but not b and c. Then there

is no place in the model to put a, since a must intersect d but not e and f . Lekkerkerker

3

a

b c

d

e f

Figure 1.2: Example of a chordal graph that is not an interval graph.

and Boland [10] give a proof that a graph is an interval graph if and only if it is chordal and

contains no asteroidal triple.

Lemma 1. [7] If a graph is chordal, then it contains a simplicial vertex. If it is not complete,

then it contains at least two nonadjacent simplicial vertices.

Proof. If G is complete, then all vertices in G are simplicial. If G is not complete, then we

proceed by induction; assume the lemma is true for all graphs with fewer vertices than G.

We choose two nonadjacent vertices a and b. Then we choose a minimal set of vertices S

such that, if they are removed, they will separate a and b into different components. Let GS

be G with the vertices in S removed, and let A be the graph component in GS containing a,

and let B be the component containing b. It suffices to prove that the lemma applies when

G is connected, since the result will follow for each connected component.

Let u and v be two nonadjacent vertices in S. Since S is minimal, every vertex in

it must be adjacent to at least one vertex in A and one vertex in B. So, there must be

some shortest path from u to v via A [u,A1, A2, ..., Ak, v] and some shortest path through B

[u,B1, B2, ..., Bm, v]. These paths form a cycle [u,A1, A2, ..., Ak, v, B1, B2, ..., Bm, u]. Since G

is chordal, this cycle must contain a chord. The vertices Ai and Bj are not adjacent since S

separates A and B. The vertices Ai can’t contain a chord since they form a shortest path,

and likewise for Bi. So, the only option is for the chord to be between u and v. All vertices

in S form a clique.

Then, if G[A ∪ S] is complete, a is simplicial in that subgraph; it is also simplicial in G

since a has no neighbors in B. Otherwise, we proceed by induction on the subgraph G[A∪S].

This has two nonadjacent simplicial vertices, one of which must lie in A since S is a clique,

4

C1 C2 C3 C4

a
b
c
d e

f
g

C1 C2 C3 C4
a 1 0 0 0
b 0 1 1 0
c 0 1 1 0
d 0 1 0 0
e 0 0 1 0
f 0 0 1 1
g 0 0 0 1

Figure 1.3: Interval graph with maximal cliques C1 - C4 and clique matrix

and this vertex is simplicial in G. By symmetry, we can find the second simplicial vertex in

B, and these two vertices are nonadjacent.

Intuitively, interval graphs may not branch into three or more directions (because that

creates an asteroidal triple), and they may not circle back on themselves (because that

creates a chordless cycle).

1.2.3 The consecutive ones property

A clique matrix is a matrix consisting of only ones and zeroes, where each row represents

a vertex and each column represents a maximal clique. The entry for a given vertex and

clique has a 1 if the vertex is a member of that clique and a 0 otherwise. See Figure 1.3 for

an example interval graph with its associated clique matrix.

Since every chordal graph has a simplicial vertex (Lemma 1), and the chordal property

is hereditary, this implies a perfect elimination order of the vertices in a chordal graph. We

choose a simplicial vertex, remove it, and repeat to create this order. Likewise, if a graph

has a perfect elimination order, that means it must be chordal, since a chordless cycle of

length 4 or greater does not have a simplicial vertex.

For non-chordal graphs, the number of columns in the clique matrix may be exponential

in the number of vertices. For example, let Gd be a graph with vertices v1, v2, ..., v2n. Then

let v2i−1 be adjacent to v2i for i ∈ 1, 2, ..., n. So, v1 is adjacent to v2, v3 is adjacent to v4, etc.

Then let G′d be the complement of Gd. Note G′d is not chordal. In G′d, each maximal clique

5

is of size n, and consists of exactly one member of each pair of vertices. A maximal clique

may be built by selecting one vertex from each pair. There are 2n ways to select unique

maximal cliques this way, so G′d contains that many maximal cliques.

For chordal graphs, the number of maximal cliques is bounded by the number of vertices

n. Since a chordal graph has a perfect elimination order, the first vertex v in this order is

part of exactly one maximal clique of size s = |N [v]|. If we remove this vertex and repeat,

we can proceed for a maximum of n iterations before we run out of vertices to remove. A

vertex may be part of a clique but not part of a maximal clique, so the number of maximal

cliques may be less than n. This suggests a method to build the clique matrix for a chordal

graph: remove vertices according to the perfect elimination order, and for each vertex that

is the beginning of a new maximal clique, add a column to the matrix. To tell if a vertex is

the beginning of a new maximal clique, when we encounter a vertex w which is the start of

a new maximal clique C (including the first vertex processed), w will have a vertex x which

is next in the elimination order. We attach a list of the vertices N(w)− x to x. Then when

we move on to x, we check x’s neighborhood against that list. If x has any neighbors not in

that list, then those neighbors are part of one or more new maximal cliques. We can then

continue on in that same fashion; if vertex y follows vertex x, then when we’re processing

x we attach the list of vertices N(w) − x − y to y, and check the list when we get to y,

discovering y’s neighbors which start a new maximal clique.

The consecutive ones property for rows means the matrix’s columns may be permuted in

such a way that all of the ones in each row are consecutive.

Theorem 2. [7] A graph is an interval graph if and only if its clique matrix has the consec-

utive ones property for rows.

Proof. If a graph has an interval model, the maximal cliques may be read from the model

by finding the points on the number line where a left endpoint p1 is followed immediately

by a right endpoint p2. The intervals that contain the line segment between p1 and p2 form

6

a maximal clique. This clique is a column in our matrix. Taking these columns in the order

in which they appear in the model gives a consecutive-ones ordering.

Conversely, given a clique matrix for a graph in consecutive-ones form for rows, the

interval model may be read directly from the matrix by drawing each interval directly over

each set of consecutive ones. This is a valid interval model since two vertices are adjacent if

and only if they’re part of a common clique.

1.2.4 Threshold graphs

An independent set of vertices, sometimes referred to as a stable set, is a set of vertices

such that no two vertices in the set are adjacent. Chvátal and Hammer [5] provide the idea

of a threshold dimension, described as follows:

Let V = {v1, v2, ..., vn} be the set of vertices in an undirected graph G. Then any subset

X ⊆ V can be represented by a characteristic vector x = {x1, x2, ..., xn} where for all i

xi =

1 if vi ∈ X,

0 if vi /∈ X.
[5]

This allows us to plot any subset of V onto the corner of a hypercube in Rn space. Then,

if we plot all subsets of V on this hypercube, we ask the question of whether we can place

a hyperplane such that all of the independent sets of V lie on one side of the plane and the

other vertices lie on the other side. If we can, then G is a threshold graph. Equivalently, a

threshold graph is a graph that can be represented by a real number S (a "threshold") and a

set of vertex weights w. Then two vertices u and v are adjacent if and only if wu + wv > S.

Note that we may assume wu, wv, and S are all positive integers without loss of generality.

Lemma 2. [5] The complement of a threshold graph is a threshold graph.

Proof. Assume we have a positive integer vertex labeling wi and threshold S for a threshold

graph G = (V,E). Let G = (V,E) be the complement of G. Then:

7

xy ∈ E ⇔ wx + wy > S

xy /∈ E ⇔ S ≥ wx + wy

xy ∈ E ⇔ −wx − wy ≥ −S

xy ∈ E ⇔ (S − wx) + (S − wy) ≥ S

xy ∈ E ⇔ (S − wx + 1) + (S − wy + 1) ≥ S + 2

xy ∈ E ⇔ (S − wx + 1) + (S − wy + 1) > S + 1

This gives us wi = (S − wi + 1), and S = S + 1 as a valid labeling and threshold for

G.

Since the complement of a threshold graph is a threshold graph, that means threshold

graphs have a somewhat symmetric structure – on one side, we have the independent sets

of the graph, and on the other side, we have the cliques of the graph. Then the relationship

between the sets on these two sides is of a predictable structure.

Let δ0 = 0. Let δ1 < δ2 < ... < δk < |V | be the sorted, distinct degrees of the nonisolated

vertices in G. For example, if a graph has 3 vertices of degree 0, 5 vertices of degree 1, 0

vertices of degree 2, and 1 vertex of degree 3, then δ0 = 0, δ1 = 1, δ2 = 3, and k = 2. Then

a degree partition for vertex set V = D0 + D1 + ... + Dk where Di is the set of all vertices

of degree δi. Only D0 is possibly empty. Chvátal and Hammer [5] also show us that given

only the vertices V with their degrees in a graph G, we can determine whether or not G is a

threshold graph in time proportional to |V |. Let y be a vertex of largest weight in G. Let x

be a vertex of degree 1 or greater and w be a neighbor of x. Then, wy ≥ ww, wx + ww > S,

and therefore wx + wy > S, so x and y are adjacent. This implies all vertices in Dk are

adjacent to all vertices in D1. Each vertex in D1 has exactly one neighbor. If another vertex

z is adjacent to a vertex f in D1, then z must have a weight wz ≤ wy, and y will necessarily

be adjacent to all neighbors of z, contradicting that f is in D1. So, y must be the only

neighbor of every vertex in D1, and |D1| = k. Then, by induction, we can take the subgraph

of G induced by V ′ = V −D0−Dk and repeat. Therefore, if G is a threshold graph, then for

8

all distinct vertices x ∈ Di and y ∈ Dj, xy is an edge in G if and only if i+ j > k. Then

δi+1 = δi + |Dk−i| for 0 ≤ i ≤ bk/2c − 1, and

δi = δi+1 − |Dk−i| for k ≥ i ≥ bk/2c+ 1.

These recurrences can be used to test whether a graph is a threshold graph using only

the degrees of its vertices in time proportional to |V |. We first make an array of size |V |

and fill it with a count of the vertices of each degree by walking through the list of degrees.

Then from that we can calculate the δi list and the size of each element in the Di list. Then

we can walk through those two new lists and verify whether or not the recurrences hold.

1.2.5 Threshold tolerance and co-TT graphs

Threshold tolerance graphs (also called TT graphs), are similar to threshold graphs, but

more general. In threshold tolerance graphs, each vertex v is assigned both a weight wv and

a threshold tv, and two vertices vx and vy are adjacent if and only if wx + wy ≥ min(tx, ty).

A threshold tolerance graph is a tolerance graph if all of the vertex tolerances are the same.

A co-TT graph is the complement of a threshold tolerance graph.

We can redefine interval graphs as the following:

Definition 1. [6] A graph G = (V,E) is an interval graph if and only if there exist functions

a, b : V 7→ R such that:

• a(x) ≤ b(x) for all x ∈ V ;

• xy ∈ E ⇔ a(x) ≤ b(y) ∧ a(y) ≤ b(x) for all x, y ∈ V .

We can also redefine co-TT graphs as the following, which is simply the previous definition

with one requirement removed:

Definition 2. [15] A graph G = (V,E) is a co-TT graph if and only if there exist functions

a, b : V 7→ R such that:

• xy ∈ E ⇔ a(x) ≤ b(y) ∧ a(y) ≤ b(x) for all x, y ∈ V .

9

w=3
t=9

w=3
t=5

w=5
t=9

w=1
t=5

Figure 1.4: TT model of P4, where w is weight and t is threshold

Intuitively, these definitions correspond well with the fact that interval graphs are a

subclass of co-TT graphs. In interval graphs, each interval has a starting and an ending

point, and the ending point must be after the starting point. If we relax that requirement,

and allow the ending point to occur before the starting point, the co-TT graph class results.

Each co-TT graph can be represented by a co-TT model, that is, interval models where

some of the intervals are reversed. We refer to reversed intervals as "red", and forward

intervals as "blue". Note that the model for a graph may not be unique.

True twin vertices v, v′ are vertices such that N [v] = N [v′], and false twin vertices are

vertices such that N(v) = N(v′).

Since co-TT graphs are the complement of TT graphs, any graph that is isomorphic with

its own complement must be in both classes or in neither. For example, a cycle of length 5

is neither TT nor co-TT. It is not co-TT because it is not an interval graph and it has no

simplicial vertices. It is not TT because it is its own complement and is not in co-TT.

Another example is that a path of length 4 is both TT and co-TT. It is co-TT because

it is an interval graph. It is TT because it is its own complement. In addition, a TT model

for it is given in Figure 1.4.

1.2.6 PQ trees

The PQ tree, introduced by Booth & Lueker [4], is a data structure which can solve the

problem of ordering a matrix to test if it is consecutive-ones and to provide the ordering if

so. See Figure 1.5 for an example PQ tree, and Figure 1.6 for its associated clique matrix.

The root of the PQ tree represents the entire set of columns, and the leaves of the tree each

represent a single column. Each internal node represents a subsequence of this set. Using

an internal node in this way allows us to enforce that the leaf descendants of a node are

10

A B C

D FE

G A BC

D F E

G

⇔

Figure 1.5: Example PQ tree and a valid rearrangement; circles are P nodes, rectangles are Q
nodes, and triangles are leaves.

consecutive, since the children of two separate nodes cannot be in an intermixed order when

we traverse the tree. PQ trees have two types of internal node: P nodes and Q nodes. A P

node’s children may be permuted arbitrarily, and a Q node’s children may only be reversed.

(Note that if a node has only two children, the behavior of the two types of internal node is

identical; in this case, we say it is a P node by convention.)

If a graph is empty, its associated PQ tree will contain only one node, and that node

must be a P node, since any order is a consecutive-ones ordering. To see why P nodes

are alone insufficient and we need Q nodes, examine the clique matrix for a path, shown

in Figure 1.7. A path can be represented by a single Q node with each vertex as a child,

and in this clique matrix, the columns may be reversed, but the order cannot be permuted

arbitrarily without separating two of the ones. With these two internal node types, the PQ

tree can simultaneously represent all possible consecutive-ones permutations of the columns

in our matrix. When we permute a non-leaf node of the tree according to the P and Q rules,

we get a different valid permutation of columns in the leaves. We can read this order by

doing a traversal of the tree to collect the leaves.

The PQ tree is built incrementally, by adding each row of the matrix one at a time

and rearranging the tree according to the new row to make a new valid tree before moving

on to the next row. We begin with a tree that contains a single P node; this tree can

11

A B C D E F G
v1 1 1 0 0 0 0 0
v2 0 0 1 1 1 1 0
v3 0 0 0 1 1 1 1

Figure 1.6: Clique matrix for the PQ tree in Figure 1.5

C1 C2 C3 ... Ck−2 Ck−1 Ck

v1 1 0 0 0 0 0
v2 1 1 0 0 0 0
v3 0 1 1 0 0 0
...
vk−2 0 0 0 1 1 0
vk−1 0 0 0 0 1 1
vk 0 0 0 0 0 1

Figure 1.7: Clique matrix for a path

represent any permutation of the columns of the matrix. Then, one by one, we add each row

of the matrix, and rearrange the tree to reflect this new information. The rearrangement

is done via a set of 10 template replacements, some quite simple and some more complex,

done in careful order at each step of building the tree. Each template consists of a pattern

to match inside the tree, and a replacement structure for the part of the tree that the

pattern matched. Because of this set of replacements, the PQ tree is sometimes considered

a difficult or complex algorithm, and a potentially simpler alternative called the PC tree has

been provided by Hsu and McConnell [9]. Intuitively, the PQ tree can be thought of as a

children’s mobile, arbitrarily rotating and rearranging itself in the breeze to represent any

particular order of the matrix at a particular time.

When a new row is added to the PQ tree, some of the new elements may be a 1 and

some may be a 0. If a node’s leaf descendants are all 1 in the new row, we say the node is

full. If they’re all 0, we say the node is empty. Otherwise, we say the node is partial. See

Figure 1.8 for an example node labeling.

We start at the leaves, and work our way up the tree. If a node is full or empty, then

no change is necessary for that node. If, however, a node is partial, then some template will

12

A B C

D FE

G

Figure 1.8: Example of PQ tree row labeling, for new matrix row abcdefg → 0001111; empty
nodes are empty, filled nodes are full, and striped nodes are partial.

v

a
b

c

d
e

f
g

a
b

c

d

e

f g

factor

quotient

⇔

Figure 1.9: Example of one-layer factorization

have to be applied to resolve the conflict. As we’re working our way up the tree, we can

apply a template to a node without having to worry that the change will affect the node’s

children. All parents of a partial node are partial, and any change made can have additional

effects further up the tree. If at some point we come to a partial node, and none of the

templates match, then the matrix is not a consecutive-ones matrix.

The PQ tree solves the problem of ordering a potential consecutive-ones matrix in O(n+

m) time [4].

1.2.7 Modular decomposition

We shall now investigate what happens when we use a single vertex of a graph to represent

a certain kind of subgraph, as depicted in Figure 1.9. What makes this possible is that the

set of vertices in the subgraph are a module.

13

x0 y0

xi yi

A B

Figure 1.10: Edges between modules

Let graph G with vertices V have subgraph G′ with vertices V ′. Then V ′ is a module of

G if, for every vertex v in V − V ′, v is either adjacent to every vertex in V ′ or adjacent to

none of the vertices in V ′. If v has at least one neighbor and one non-neighbor in V ′, then

v is a spoiler (since it spoils V ′’s chances of being a module). If V ′ is a module, then G′ is

the subgraph induced by V ′ and is a factor of G, and the graph created by replacing G′ in

G with a single vertex is called a quotient. Single vertices are modules, as is the set of all

vertices in a graph.

Since a module has no spoilers, we can represent the relationship between the module

and a vertex with a single edge or non-edge. In addition, we can represent the relationship

between two modules with a single edge or non-edge. See Figure 1.10. Let A and B be

disjoint modules of G. Let xi be the vertices in A, and yi be the vertices in B. The two

vertices x0 and y0 (the only two vertices that must exist here) have a relationship; without

loss of generality, assume they are adjacent. Then if x0 and some yi 6=0 are not adjacent, x0

will be a spoiler for B. So x0 must be adjacent to every yi. Via a similar argument, every xi

must be adjacent to y0, and in addition every xi must be adjacent to every yi. So, a single

edge or non-edge is sufficient to represent the relationship between two entire modules. This

is why we can represent a module with a single vertex in the quotient.

We can perform this modularization of a graph recursively, resulting in a tree. It can

be done in a unique, canonical way, called a modular decomposition, defined as follows. See

Figure 1.11. Given a graph G with vertex set V , the root of the modular decomposition is V ,

and the n one-element subsets of V are the leaves. The children of V are obtained as follows:

14

p

s ||

a b

c

d e

f

a

b

c

d

e

f ⇔

Figure 1.11: Example of a graph with its modular decomposition tree. Prime node is marked p,
series node is marked s, and parallel node is marked ||. The annotated quotient of the prime node
is shown with dashed lines.

If G is disconnected, its connected components are the children. If G is disconnected, the

connected co-components of G are the children. Otherwise, the maximal modules that are

proper subsets of V are a partition of V , and these are the children. The rest of the tree

is obtained by recursion on the subgraphs induced by the children that have more than one

vertex.

This tree of modules represents every possible way to split the graph into modules at

once. In the definition of the modular decomposition, there are three cases, and we shall

revisit each case in slightly more detail.

First, consider a graphG with several disconnected components. In this case, our quotient

graph will be a disjoint set of vertices, and each one will be associated with a module

consisting of the related component in G. However, this simple model is complicated by

the fact that a module may consist of two of the connected components, even though they

are disconnected. Indeed, it is clear that any non-empty combination of the connected

components of G is a module, and this leads to many possible ways to decompose G into

quotient and factors. So, we use the factorization that treats each disconnected component

as its own module, and we say the module is a parallel module. The children of a parallel

module may be selected in any combination to form a module.

Now, consider a graph G whose complement is disconnected. Each co-component has

same relationship with every other co-component in the graph. So again we have a case

15

where any combination of children may be selected to be a module. The only difference is

that this time all of the module’s children are adjacent instead of disconnected. In this case,

we say the module is a series module.

Lemma 3. If A, B, and C are disjoint subgraphs of undirected graph G, and both A ∪ B

and B ∪ C are modules of G, then the following are also modules of G:

• A, B, and C;

• A ∪ C; and

• A ∪B ∪ C.

Proof. Let vA, vB, and vC be vertices in A, B, and C, respectively. Assume vA is adjacent

to vC . Then since A∪B is a module, vC is adjacent to vB. And since B ∪C is a module, vA

is adjacent to vB. So, all three are a clique. Then if vA is not adjacent to vC , via a similar

argument, all three are disconnected.

Let VG represent the vertex set of G, and let v be a vertex in VG− (VA ∪ VB ∪ VC). If no

such vertex exists, the remainder of the lemma is trivially true. Since A ∪ B is a module, v

must have the same relationship with vA as vB, and likewise for vB as vC . So, v must have

the same relationship with every vertex in VA ∪ VB ∪ VC .

There is just one more case left to deal with. If G is a connected graph whose complement

is also connected, V is the vertex set of G, and G′ is a module of G, then G will contain

some vertices outside G′ which are adjacent to it, and some vertices outside G′ which are

not adjacent to it. In this case, there is only one way to factorize into nontrivial maximal

modules, and we say it is a prime module. In the definition of the modular decomposition,

we saw that the children of a prime module are a partition of that module, and this is due

to Lemma 3.

Each node’s set of leaf descendants defines the module associated with that node. To

store the modular decomposition, we don’t need to store a list of vertices at each node, since

16

we can collect the vertices for the node by doing a DFS on the node’s children and collecting

the leaves.

A strong module is a module that doesn’t properly overlap with any other module, and

a weak module is one that does overlap. Due to Lemma 3, Every weak module is a union of

siblings.

If the modular decomposition tree is annotated properly, it can be a complete represen-

tation of its associated graph. Let the associated quotient for a node m in a graph G be the

graph obtained by replacing every child ofm with a single vertex representing that child. For

series and parallel nodes, this associated quotient is trivial and can be recreated given only

the node type and number of children. For prime nodes, we must store the node’s associated

quotient in order to reconstruct the original graph. The quotient can be stored as a set of

edges between the children of the node, as shown in Figure 1.11.

1.2.8 ∆ trees

As we have seen, we can use a single vertex to represent an entire subgraph. We shall

now explore the same idea again, but from the perspective of the interval model; that is, we

shall use a single interval to represent an entire interval subgraph.

One way to represent a set of intervals on a line is to use a string representation. The

string representation allows us to represent endpoint orderings without using the numerical

start and end points of each interval. The string representation is simply an ordered list of

the interval names, where each interval name appears twice in the string. The first time it

appears, it represents the start point of that interval, and the second appearance represents

the end point. If two intervals a and b overlap, their string representation might be abab. If

a contains b, the string representation will be abba. A string representation may be created

easily given an interval model by reading the order of start and end points of the intervals,

and an interval model may be created from a string representation by assigning monotonically

increasing values to the start and end points of each interval in order.

17

m l d e b a c e d f g h i a b c i f g h j j k k l m
a

b c
d

e
f

g
h

j k

l
m

l m

e d

i

Q

P

S

R

T

b

c

(RRjjkk)

(STSUTU)

a

(deed)

(baab)

(mlQQlm)

kj

W

(WcWc)

i

h

U (XiiX)

(fghfgh)X

f g

Figure 1.12: [13] Example ∆ tree with interval realizer. Letters in parentheses are ∆ tree labels
indicating the start and end point order of nodes.

We may perform substitutions in the string representation. There are two types of

substitution. We shall substitute a string Ri in place of an interval a in string Rj. The

first type of substitution is if a’s start and end points are adjacent in Rj. In this case, we

may simply replace aa with Ri in Rj. For the second type of substitution, Ri must have the

property that all of its start points occur before all of its end points. We replace the first

occurrence of a in Rj with all of the start points in Ri, and the second occurrence of a with

all of the end points in Ri. For example, if R1 = abab, and R2 = xyyx, substituting R2 in

R1 for a yields the string xybyxb.

In a co-TT model, each pair of vertices and their associated intervals u, v have an

intersection type. There are four possible intersection types for (u, v):

• Non-intersection: u and v do not intersect.

• Overlap: u and v strictly overlap. That is, they share at least one point, but each

contains at least one point not inside the other.

• Containment: u contains v.

18

• Subset: v contains u.

Every ordered pair of vertices must have one of these intersection types. We represent

all of the intersection types for a graph in a matrix called the intersection type matrix.

A ∆ tree (Delta tree) is a tree that can represent all valid interval models for a given

intersection type matrix. The ∆ tree is similar to the PQ tree; where the PQ tree stores the

maximal cliques of a graph as its vertices, and can be thought of as operating on the clique

matrix of an interval graph, the ∆ tree stores the vertices directly and can be thought of

as operating on the interval model. The vertices are stored in the ∆ tree leaves, and the

∆ tree internal nodes have string representations associated with them. Just as with the

modular decomposition, the ∆ tree is a quotient-based recursive decomposition of a graph;

in this case, it must be an interval graph. The nodes in each layer in the tree contain string

representation substitutions for the layer below, and these substitutions correspond with the

module-based quotient relationship between a parent and its children. This allows us to

reorder large parts of the interval model all at once, by reordering the string representation

associated with an internal node. An example ∆ tree is given in Figure 1.12. ∆ trees may

be created in O(n+m) time [12].

The modular decomposition has three different node types (prime, series, and parallel),

and the ∆ tree has four: prime, linear, degenerate (full), and degenerate (empty). See Fig-

ure 1.13 for example interval modules for linear and degenerate node types. Linear nodes

are not in the modular decomposition, and are nodes in which the order of the children

may not be permuted. These nodes are added by ∆ trees since two intervals may have a

containment/subset relationship, a relationship which is unimportant in the modular decom-

position. Degenerate nodes are nodes where the children may be permuted in any order,

and correspond to the modular decomposition series and parallel nodes. Prime nodes are all

other nodes, and their children may be reversed. In a ∆ tree, just as in a modular decompo-

sition tree, each vertex has the same relationship with every vertex inside a ∆ module, and

Lemma 3 applies to ∆ trees as well.

19

(a) Linear (b) Degenerate (full) (c) Degenerate (empty)

Figure 1.13: Example interval models for some types of ∆ tree nodes

1.2.9 The tree isomorphism algorithm

In [1], an algorithm is given to detect isomorphisms between rooted trees in O(n) time.

In this algorithm, we start at the leaves, and we work our way up the tree, layer by layer,

labeling each node with a label that completely describes that subtree’s structure. The labels

at each layer share a data structure between trees, so if two subtrees are isomorphic, they

will receive the same label. Each label depends on its children’s labels, so when we’re done

with the labeling procedure the label on the root represents the structure for the entire tree.

Then we can compare the root labels to see if two trees are isomorphic.

The labels given to each node have the following requirements in order for the algorithm

to work:

• If the tree is permuted, the label must not change.

• If two tree nodes are isomorphic, their labels must be the same.

• If two tree nodes are not isomorphic, their labels must be different.

This means a given node’s label must be determined entirely by the structure of the

tree below that node. Since we move up the tree layer by layer, the label for a node may

be thought of as including the layer number of that node, even though it is not explicitly

included in the algorithm in [1].

20

CHAPTER 2

UNKNOWN ISOMORPHISMS

We now turn to the main new result of this thesis; testing whether or not two co-TT

graphs share an isomorphism.

Let πA,B represent an isomorphism between A and B. Let G and G′ be co-TT graphs

that have an unknown isomorphism πG,G′ , and let n be the number of vertices in G, and m

be the number of edges. We will show that it is possible to identify πG,G′ in O(n2) time.

Theorem 3. [6] It is possible to recognize co-TT graphs in O(n2) time.

If neither G nor G′ are co-TT, this method does not apply. If one is co-TT but the other

is not, the two graphs are not isomorphic. We will proceed assuming both graphs are co-TT.

2.1 Performing a blue-red division

Golumbic, et. al. [8] give a very convenient method to identify which vertices are red

and which are blue in any co-TT graph, restated as the following:

Lemma 4. [8] If G is a co-TT graph, then there exists a co-TT model where the red vertices

are the simplicial vertices that have no true twins in G, and the blue vertices are all others.

The proof for their characterization proceeds as follows. Red vertices must be simplicial,

because for a red vertex u to intersect another vertex v, v must be blue, and must contain

u. All vertices that contain u must intersect, so all neighbors of u must intersect, meaning

u is simplicial. Then, if blue vertex v is simplicial and does not have a true twin in G, its

neighbors must all be blue. If it had a red neighbor u, then u’s interval would be contained

in v’s, implying all neighbors of u intersect v, meaning u and v would be true twins, a

contradiction. All the simplicial vertices without true twins may be considered red, since we

do not change their adjacency by coloring them red and placing them at the intersection of

all their neighbors.

21

By Lemma 3 of [6], a blue-red partition may be found in O(n+m) time.

Using Lemma 4, we can color the vertices of G. Let B be the set of blue vertices of G,

and let R be the set of red vertices. Note that this is a partition of G; each vertex is in

exactly one of B or R. Note also that no two red vertices are neighbors with each other,

since red vertices cannot intersect in a co-TT model. Likewise, let B′ and R′ be the vertices

in the blue/red division of G′.

Let G[V] denote the subgraph of G induced by the set of vertices V .

Proposition 1. Let π be an isomorphism between G and G′, let U be a subset of the vertices

of G, and let U ′ be their images in G′. Then the mapping between U and U ′ given by π is

an isomorphism between G[U] and G′[U ′].

Lemma 5. An isomorphism, if it exists, must map simplicial vertices to simplicial vertices,

and likewise non-simplicial to non-simplicial vertices.

Proof. Without loss of generality, let π be an isomorphism that maps a simplicial vertex

v to a non-simplicial vertex v′. Since π maps v to v′, it must also map N [v] to N [v′], by

Proposition 1. Since v is simplicial, N [v] is complete. But since v′ is not simplicial, N [v′] is

not complete, a contradiction.

Lemma 6. All isomorphisms between G and G′ map red vertices to red, and blue to blue,

when red and blue are as defined by Golumbic, et. al in [8].

Proof. Without loss of generality, assume two isomorphically mapped vertices v and v′ are

in B and R′. If v′ is in R′, then it must be simplicial and have no true twins in G′. Since v

and v′ are isomorphically mapped, and due to Lemma 5, v must also be simplicial and have

no true twins. All vertices in G that are simplicial and have no true twins are in R, so v

must be in R, and therefore cannot be in B, a contradiction.

2.2 Reducing the co-TT graph

Later, we will build a co-TT model that represents both G and G′ interchangeably.

In order to do this, it will be helpful to partition the graph into equivalency classes that

22

represent the sets of twins in the graph. We will build classes for the true twins if they’re in

B, and for the false twins in R. (The algorithm for recognizing co-TT graphs in [6] builds

the same classes.)

To identify these equivalency classes, we will need to sort all the blue vertices by their

closed neighborhoods, and all the red vertices by their open neighborhoods. Note that vertex

names here may be different between G and G′, and that will affect the order of the sorts,

but it will not affect the twin classes.

To sort the vertices by their neighborhoods, we can use a form of radix sort given in [1]

that runs in time proportional to the total length of all strings plus the size of the alphabet.

In our case, the length of the strings corresponds to the number of edges and the alphabet

size corresponds to the number of vertices, so for us it will run in O(n+m).

Let H be G with each set of true twins in B and each set of false twins in R replaced

by a representative vertex that has a count of its twin equivalency class members associated

with it (a "multiplicity label"). Likewise, let H ′ be the reduced G′.

A label-preserving isomorphism between two reduced graphs (i.e. H and H ′) is an iso-

morphism that only maps two vertices if their multiplicity count and color labels (as defined

in [8]) are the same.

Lemma 7. A label-preserving isomorphism between H and H ′ exists if and only if an iso-

morphism between G and G′ exists.

Proof. If G and G′ are isomorphic, then H and H ′ are isomorphic, because VH is a subset

of VG, and by Proposition 1.

If H and H ′ have a label-preserving isomorphism, then G and G′ are isomorphic, because

G and G′ can be reconstructed from H and H ′ and their vertex labels, by expanding each

vertex that has a multiplicity count into that many twin vertices, where blue vertices are

given true twins and red vertices are given false twins.

23

2.3 Finding the blue-only interval model

The subgraphs induced by B and B′ contain only blue vertices, and are interval graphs

by definition.

Lemma 8. [9] An interval model can be constructed from an interval graph in O(n + m)

time.

Let IB and IB′ be interval models for B and B′, constructed using any existing method

such as PQ trees or PC trees. Note these models may not be the same even if G and G′ are

isomorphic.

2.4 Creating the red extension of the blue model

The red extension is a concept presented by [6] and is the blue-only interval model with

red intervals added. Each red interval is added such that its left endpoint is just to the right

of the rightmost left endpoint of any of its neighbors, and its right endpoint is just to the

left of the leftmost right endpoint of any of its neighbors. If left endpoints coincide, we order

them left-to-right by ascending order of neighborhood size, and if right endpoints coincide,

we order them left-to-right by descending order of neighborhood size. It is possible for the

newly added red interval to intersect an existing blue interval with which it is not a neighbor,

so the red extension for a graph G is not necessarily a co-TT model for G.

Let E be the red extension of IB using R. Likewise let E ′ be the red extension of IB′

using R′.

2.5 Creating the intersection type matrices

Golovach, et. al. [6] provide an algorithm called Co-TT-Model(G′, B′, R′) that produces

the intersection types and co-TT model for the given co-TT graph and its red/blue division.

(In that paper it is numbered as Algorithm 2; here it is reproduced as Algorithm 1).

24

Data: The graph G′ = (V ′, E′) is a co-TT graph with blue-red partition (B′, R′), B′ has no true
twins, and R′ has no isolated vertices or false twins

Result: A labeling of elements of AV with their intersection types in a co-TT model I(B′, R′) of G′

1 for (x, y) ∈ AV ′ do
2 Find whether N [x] ⊂ N [y] (Lemma 7);
3 end
4 for (r1, r2) ∈ AR′ do
5 Find whether N(x) ⊂ N(y) (Lemma 7);
6 end
7 for (b1, b2) ∈ AB′ (Lemma 10) do
8 if b1b2 6∈ E′ then
9 Assign (b1, b2) to En ;

10 end
11 else if N [b1] ⊂ N [b2] then
12 Assign (b1, b2) to As and (b2, b1) to Ac ;
13 end
14 end
15 for (b1, b2) ∈ AB′ do
16 if (b1, b2) has not already been assigned then
17 Assign (b1, b2) to Eo ;
18 end
19 end
20 Construct an interval model IB of G[B′] realizing these labels (Lemma 8) ;
21 Let I ′ be the red extension of IB ;
22 for (r1, r2) ∈ AR′ do
23 if N(r1) ⊂ N(r2) then
24 Assign (r1, r2) to Ac and (r2, r1) to As (Lemma 8);
25 end
26 else if (r1, r2) ∈ En(I ′) then
27 Assign (r1, r2) to En (Lemma 11);
28 end
29 end
30 for (b, r) ∈ B′ ×R′ do
31 if br ∈ E′ then
32 Assign (b, r) to Ac and (r, b) to As (Lemma 1);
33 end
34 else if (b, r) ∈ As(I ′) then
35 Assign (b, r) to As and (r, b) to Ac (Lemma 12);
36 end
37 else if (b, r) ∈ En(I ′) then
38 Assign (b, r), (r, b) ∈ En (Lemma 12);
39 end
40 end
41 for (x, y) ∈ AV ′ do
42 if (x, y) has not been assigned then
43 Assign (x, y) to Eo ;
44 end
45 end
46 Apply Lemma 8 to find a co-TT model I(B′, R′) of G′;

Algorithm 1: [6] Co-TT-Model(G′, B′, R′). Lemma numbers are from [6].

25

Lemma 9. The entry corresponding to vertices u and v in the intersection type matrix

produced by Co-TT-Model(G′, B′, R′) is determined uniquely by N [u] and N [v]. This is true

for all entries in the matrix.

Proof. Several conditionals are used in calculating the entries of the matrix:

• The tests on lines 2, 5, and 11, and 23 are directly based on N [u] and N [v], or N(u)

and N(v).

• The tests on line 8 and 31 are based on the entries in E ′ (the edge set for the source

graph) that correspond to u and v.

• The tests on line 16 and 42 are based only on previous tests.

• For the test on line 26, both u and v are red. If G[N(u) ∪ N(v)] is not a complete

subgraph of G, then u and v do not intersect in the co-TT model. If G[N(u) ∪N(v)]

is a complete subgraph of G, then u and v do intersect in the co-TT model. Note this

does not mean the vertices of G represented by u and v have an edge between them;

if two red intervals intersect in the co-TT model, they do not share an edge in the

related graph. So, the results of the test are directly correlated to the neighborhoods

of u and v.

• For the test on line 37, one of u and v is red and the other is blue. Assume without

loss of generality that u is red and v is blue. Then if N(u) * N(v), the intervals for u

and v do not intersect. And if N(u) ⊆ N(v), the intervals for u and v do intersect. So,

again, the results of the test are directly correlated to the neighborhoods of u and v.

• For the test on line 34, assume without loss of generality that u is red and v is blue.

Then we are testing if u contains v. Each neighbor b′ of u is blue and contains u.

First assuming u does contain v in the red extension, then u must also contain v in

the co-TT model, since v must be contained by b′ by transitivity, and u is added by

the red extension procedure in such a way as to be contained by b′ and to contain v.

26

For the converse, we reverse the roles of the red extension and the co-TT model. If

u contains v in the co-TT model, then it must also contain it in the red extension,

since we have added u to the red extension in such a way that it contains v. So, the

containment is decided entirely by neighborhoods of u and v, and the fact that we’re

using a red extension.

For isomorphism, we must attach some extra information to the intersection type matrix.

Vertices are shown both as rows and as columns in the matrix. For just the rows, we attach

each vertex’s color and multiplicity count from when we reduced G to H.

Let M and M ′ be the intersection type matrices built from E and E ′ as in [6].

Two matrices are isomorphic if their rows and columns can each be permuted in such

a way that the matrix values are the same. When the matrix is labeled, we add in the

requirement that the row labels (vertex color and multiplicity count) must also be the same

in the permuted matrices for the matrices to be isomorphic.

Lemma 10. The labeled matrices M and M ′ are isomorphic if and only if G and G′ are

isomorphic.

Proof. By Lemma 9, The intersection type for each pair of vertices u, v in matrix M is

uniquely determined by H[N [u] ∪N [v]], IB and IB′ . The closed neighborhoods of selected

vertices of isomorphic graphs are isomorphic, by Proposition 1. The matrix rows have the

same vertex label data as H and H ′. So, M and M ′ are isomorphic if and only if H and H ′

are. From Lemma 7, H and H ′ are isomorphic if and only if G and G′ are. So, M and M ′

are isomorphic if and only if G and G′ are.

2.6 Isomorphisms between ∆ trees

Let D and D′ be the ∆ trees created from M and M ′ using the method in [13]. Also,

attach each vertex’s color and multiplicity count to that vertex’s leaf in the tree.

27

In general, two ∆ trees are isomorphic if they can be permuted in such a way that their

structure is the same. We will add the requirement that the multiplicity labels and vertex

colors must also be the same for D and D′ to be isomorphic.

We would like to use the tree isomorphism algorithm in Section 1.2.9 to detect whether

or not our two ∆ trees D and D′ are isomorphic. In order to do this, we must construct a

label scheme that follows the isomorphism label requirements. We may use a node’s type as

part of its isomorphism label since the node type is determined entirely from the structure

of G.

Given the requirements, the node labels for ∆ trees naturally arise as comprising the

following information:

• The node’s multiplicity count

• The node’s color (red or blue)

• The node type (prime, linear, or degenerate)

• Data about the node’s children, depending on its node type:

Prime An ordered list of the labels of the node’s children, possibly reversed such that

its lexicographic order is smallest.

Linear An ordered list of the labels of the node’s children.

Degenerate The type of degenerate node (full or empty), and an unordered set of

the labels of the node’s children.

Theorem 4. G and G′ are isomorphic if and only if the labeled D and D′ are isomorphic.

Proof. We can reconstruct the graph that a ∆ tree was built from as follows:

1. Choose an arbitrary permutation of the ∆ tree.

2. From the ∆ tree, construct the co-TT model.

28

3. Read vertices, including vertex color and multiplicity count, from the co-TT model.

4. Read edges from the co-TT model based on which intervals intersect.

In our case, this will reconstruct H and H ′, along with both vertex labels, from D and

D′. By Lemma 7, if H and H ′ are isomorphic, then G and G′ are. Therefore, if D and D′

are isomorphic, G and G′ are as well.

D and D′, including labels, were created deterministically from M and M ′. So if M and

M ′ are isomorphic, D and D′ must also be. By Lemma 10, if G and G′ are isomorphic, M

and M ′ are too, so if G and G′ are isomorphic, D and D′ also are.

By Theorem 4, applying the tree isomorphism algorithm described in Section 1.2.9 to

the labeled ∆ trees allows us to determine if G and G′ are isomorphic.

2.7 Obtaining πH,H′

To create the isomorphism to return, we must permute D and D′ into the same order.

To do this, we can radix sort each tree node’s children using the ∆ tree labels created in

Section 2.6. Then traverse the trees using any reasonable method (such as in-order traversal)

to create two lists of vertices. These two lists, when mapped in order, are πH,H′ .

2.8 Obtaining πG,G′

To obtain πG,G′ from πH,H′ , we need to expand each class of twins. Any bijection that

maps an isomorphic class of either true or false twins between the two graphs will be part of

a correct isomorphism. So, we need to identify which classes of twins are isomorphic using

πH,H′ ; then, we can expand each to their vertices in G and G′ by arbitrarily pairing vertices

that were removed in the creation of H and H ′.

2.9 Algorithm

The entire process, from start to finish, is given in Algorithm 2 and Algorithm 3. Doing

the initial co-TT checks and building the ∆ trees is O(n2) by [6], labeling the ∆ trees is O(n),

29

the tree isomorphism algorithm is O(n) by [1], and expanding the twins in the isomorphism

is O(n). So, the overall process is O(n2).

Data: A graph G
Result: A ∆ tree labeled for isomorphism

1 H = reduction of G (Section 2.2);
2 (R, B) = identify red and blue vertices of H (Section 2.1);
3 IB = interval model for B (Section 2.3);
4 E = red extension of IB and R (Section 2.4);
5 M = intersection type matrix for E (Section 2.5);
6 D = ∆ tree for M (Section 1.2.8);
7 return isomorphism-labeled ∆ tree for D (Section 2.6);

Algorithm 2: MakeLabeledDeltaTree

30

Data: Two graphs G and G′
Result: An error if neither graph is co-TT, or the isomorphism between the graphs,

if it exists.
1 numCoTT = 0;
2 if G is co-TT then
3 numCoTT++;
4 end
5 if G′ is co-TT then
6 numCoTT++;
7 end
8 if numCoTT == 0 then
9 exit error;

10 end
11 else if numCoTT < 2 then
12 return not isomorphic;
13 end
14 D = MakeLabeledDeltaTree(G) (Algorithm 2);
15 D′ = MakeLabeledDeltaTree(G′);
16 if not treeIsomorphism(D, D′) (Section 1.2.9) then
17 return not isomorphic;
18 end
19 πH,H′ = build the isomorphism from ∆ trees D and D′ (Section 2.7);
20 πG,G′ = expand the multiplicity count of πH,H′ (Section 2.8);
21 return πG,G′ ;
Algorithm 3: Determine if two co-TT graphs are isomorphic, and if so, return the iso-
morphism.

31

BIBLIOGRAPHY

[1] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

[2] László Babai. Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547,

2015.

[3] László Babai. Fixing the upcc case of split-or-johnson. http://people.cs.uchicago.edu/

~laci/upcc-fix.pdf, 2017. Accessed December 2018.

[4] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,

interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci.,

13(3):335–379, December 1976.

[5] Václáv Chvátal and Peter L. Hammer. Set-packing and threshold graphs. University of

Waterloo CORR 73-21, Canada, 1973.

[6] Petr A. Golovach, Pinar Heggernes, Nathan Lindzey, Ross M. McConnell, Vinícius Fer-

nandes dos Santos, Jeremy P. Spinrad, and Jayme Luiz Szwarcfiter. On recognition

of threshold tolerance graphs and their complements. Discrete Applied Mathematics,

216:171–180, 2017.

[7] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of

Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Nether-

lands, The Netherlands, 2004.

[8] Martin Charles Golumbic, Nirit Lefel Weingarten, and Vincent Limouzy. Co-tt graphs

and a characterization of split co-tt graphs. Discrete Appl. Math., 165:168–174, March

2014.

[9] Wen-Lian Hsu and Ross M. McConnell. Pc trees and circular-ones arrangements. Theor.

Comput. Sci., 296(1):99–116, March 2003.

32

http://people.cs.uchicago.edu/~laci/upcc-fix.pdf
http://people.cs.uchicago.edu/~laci/upcc-fix.pdf

[10] C. Lekkekerker and J. Boland. Representation of a finite graph by a set of intervals on

the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

[11] George S. Lueker and Kellogg S. Booth. A linear time algorithm for deciding interval

graph isomorphism. J. ACM, 26(2):183–195, April 1979.

[12] Ross M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,

37(2):93–147, Oct 2003.

[13] Ross M. McConnell and Jeremy P. Spinrad. Construction of probe interval models. In

Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’02, pages 866–875, Philadelphia, PA, USA, 2002. Society for Industrial and

Applied Mathematics.

[14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of

Symbolic Computation, 60(0):94 – 112, 2014.

[15] C. L. Monma, B. Reed, and W. T. Trotter. Threshold tolerance graphs. Journal of

Graph Theory, 12(3):343–362, 1988.

[16] Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Journal of

Graph Theory, 1(4):339–363.

33

	Abstract
	Acknowledgements
	Dedication
	Background
	General graph isomorphism
	Relevant graph classes, concepts, and definitions
	Interval graphs
	Asteroidal triples
	The consecutive ones property
	Threshold graphs
	Threshold tolerance and co-TT graphs
	PQ trees
	Modular decomposition
	 trees
	The tree isomorphism algorithm

	Unknown isomorphisms
	Performing a blue-red division
	Reducing the co-TT graph
	Finding the blue-only interval model
	Creating the red extension of the blue model
	Creating the intersection type matrices
	Isomorphisms between trees
	Obtaining H,H'
	Obtaining G,G'
	Algorithm

	BIBLIOGRAPHY

